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This paper  takes the form of a review including some original contributions. 
A fresh derivation of  analytic energy derivative expressions for configuration 
interaction (CI) wave functions is presented. In this method the CI  energy is 
described by )~ls CiCs(H~s-r3xsE) so that the orthonormality condition is 
explicitly included therein. In the sequence of differentiations up to fourth 
order it will be demonstrated that each derivative may be expressed in terms 
of (HI j -  6I/E ) and its derivatives in a symmetric way with respect to the 
interchange of differential variables. In a similar manner, the CI  variational 
condition may be described in an equation which explicitly includes the 
normalization condition. It is shown that the differentiation of the modified 
variational condition produces the coupled perturbed configuration interac- 
tion (CPCI)  equations in directly soluble and compact  forms. The necessary 
formulae for the energy derivatives up to fourth order and the CPCI  equations 
up to second order are explicitly given. 
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I. Introduction 

Since 1970, much theoretical effort in quantum chemistry has been expended to 
obtain detailed information concerning potential energy surfaces, as the computa- 
tion of accurate wave functions has become practical for many chemical systems 
[1]. The analytical evaluation of the first and second derivatives with respect to 
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nuclear coordinates has widely opened the theoretical window toward molecular 
structure and chemical reactions in the framework of ab initio quantum 
mechanical methods [2]. 

The analytical evaluation of derivative atomic orbital (AO) integrals using 
Gaussian basis functions was first applied successfully to the energy gradient 
using self-consistent-field (SCF) wave functions [3]. Following the pioneering 
work by Pople and coworkers [4] on analytic second derivatives of the closed 
shell SCF energy, subsequent studies have seen the development of methods for 
the evaluation of  analytic first derivatives of  correlated energies using configur- 
ation interaction (CI) wave functions [5], Mr perturbation theory 
[4, 6] and the coupled-cluster [7] methods as well as analytic second derivatives 
for general SCF wave functions [8]. The analytic evaluation of second derivatives 
using CI [9] and multi-configuration (MC) SCF [10] wave functions has also 
been achieved by several groups. Most recently the first analytic third derivative 
methods for SCF wave functions have appeared, involving Raman intensities 
[11] as well as energy third derivatives [12]. 

Although one obtains much more information concerning potential energy hyper- 
surfaces by going to higher orders of derivatives, the degree of difficulty in 
formulation and implementation also increases significantly, especially when one 
uses correlated wave functions [5-10]. The orthodox way to solve the Schrrdinger 
equation in terms of one-electron basis functions is to construct a CI wave 
function, where the electron configurations are based on Hartree-Fock molecular 
orbitals described as linear combinations of atomic orbitals [13]. While the full 
CI wave function is the ultimate point to be reached, various approximations 
have to be made for realistic applications to the majority of chemical systems. 

It is evident that typical variationally determined correlated wave functions, such 
as MCSCF and CI, invoke the orthonormality condition both in the MO and CI 
spaces, as well as the variational condition for each space. In this study we are 
mainly concerned with two (orthonormality and variational) conditions on the 
CI space. It is desirable to have general expressions for analytic energy derivatives 
of the CI wave function, since the corresponding derivative expressions of other 
variationally determined wave functions, such as MCSCF and SCF, may be 
derived as limiting cases of the general CI formulae by imposing two additional 
conditions on the MO space. 

The format for this paper is primarily that of a review, but also presenting a new 
perspective on the derivation of analytic derivative expressions. In the following 
section an energy expression which explicitly includes the normalization condition 
for the CI wave function is first proposed. Then it is shown that sequential 
differentiation of the new energy expression straightforwardly produces higher 
energy derivative formulae in a manner symmetric with respect to the interchange 
of  differential variables. 

In Sect. 3, the CI variational condition is introduced in an equation that explicitly 
includes the normalization condition. Then it will be demonstrated that the 
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differentiation of the modified variational condition generates the coupled per- 
turbed configuration interaction (CPCI) equations in directly soluble and compact 
forms. 

After briefly describing the derivatives of the MO coefficients in Sect. 4, all 
necessary formulae for the CI energy derivatives up to fourth order and the 
derivatives of the Hamiltonian matrix elements up to second order will be 
explicitly given in Sect. 5. 

In light of  the complexity of the formalism described in the Sects. 3-5, we detail 
�9 possible computational procedures to obtain the analytic first and second deriva- 
tives for CI wave functions and discuss the various problems involved in a 
practical implementation in Sect. 6. 

It is to be emphasized that the primary goal of  this paper is to present a fresh 
approach to the derivation of higher CI energy derivatives. In that sense, the 
present work is most closely related to earlier research by Helgaker et al. [2d] 
and by Alml/Sf and Taylor [14]. In this context the more recent paper by King 
and Komornicki [15] should also be cited. The most efficient computational 
method available at this time for analytic CI derivatives is that of  Rice et al. 
(RAHLS) [5g]. Similarly, the fastest currently available CI second derivative 
method is that of Lee et al. (LHRSS) [9b]. The CI first and second derivative 
formalism presented here will not be competitive with RAHLS and LHRSS until 
it is modified to incorporate the Z-vector method of Handy and Schaefer [16]. 

2. General theory of energy derivative formula using CI wave functions 

The CI wave function V is described as a linear combination of electronic 
configurations qbi which are constructed from various electron occupations of 
the molecular orbitals 

v =Z c ,  I a,,). (2.1) 
I 

Here, we assume that we are focusing on a single electronic state described by 
V, i.e. {(71} is one of the sets obtained by solving the eigenvalue problem 

H IV) = E IV). (2.2) 

Definining the CI Hamiltonian matrix 

S,j = (~, IHI~j): E 'j '~ " F ~k,( tJ l kl), y~ ho + Z (2.3) 
iy i jkl  

the eigenvalue problem (secular equation) may be expressed by 

Cj (Hu  - 6 , E )  = 0 (2.4) 
J 

which is the variational condition for the determination of the wave function 
(2.1), where h~i and (ijlkI) are one- and two-electron molecular orbital (MO) 
integrals, and y~J and F ~  are the one- and two-electron coupling constants 
between electronic configurations and molecular orbitals. 
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Since the wave function is normalized, we have the condition 

E C~, = 1. (2.5) 
1 

While the electronic energy is usually described by 

E = E C, CsHm (2.6) 
/ J  

the energy expression in the following form will be used in this paper 

C, Cj( Hls T 3tsE ) = 0 (2.7) 
IY 

so that the equation explicitly includes the normalization condition (2.5). 

2.1. First derivatives 

The differentiation of Eq. (2.7) with respect to a nuclear coordinate a gives the 
expression for the CI gradient, 

,'oH,., o~\+2zoc, 
C'Cs~-~a-a -BH~a ) Oa ~ Cs(H,s-6uE)=O. (2.8) 

The second term of Eq. (2.8) has zero value due to the variational condition 
(2.4), and therefore 

/aHu aE\  
} c,c, t-a;--~,,7)=0 (2.9) 

leading to a familiar expression for the CI gradient 

OE OHu 
- E  C, C s - -  (2.10) 

Oa ~s Oa 

Note that two conditions are included in deriving Eq. (2.10), although only the 
variational condition (2.4) appears to be used. This is because Eq. (2.7) itself 
includes the orthonormality condition (2.5). 

2.2. Second derivatives 

The CI second derivative may be obtained by further differentiation of Eq. (2.8) 
with respect to a second nuclear coordinate b 

O 2 
6uE)J ea eb L r  C , C , ( H , ,  - 

[OHu OE\ ( ~ ~s ~ ~ =~ c'c',,7-~- "7~/+2z, 7 ,  
OC~ [OHu OE\ OC~OCs (Hu_~uE) 
s-,s o-s- 7 

+2~ a2Ct E c, (n,, -a, ,E):0.  (2.11) 
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One should note that the last term of Eq. (2.11) which includes the second 
derivatives of  the CI coefficients vanishes due to the variational condition (2.4). 

The differentiation of the variational condition (2.4) gives the relationship between 
the derivatives of CI coefficients and those of Hamiltonian matrix elements 

OCj I/OHIj OE\ -'~a (HIj--(~IjE)-}-~j Cj~-~a -~ij~a ) ..~-0 (2, ]2)  

which is equivalent to the so-called coupled perturbed configuration interaction 
(CPCI) equation. 

Substituting Eq. (2.12) into the second and third terms in Eq. (2.11), one may 
obtain the compact formula 

(~2Ho is o~2E ) OCIOCj CICj ~'~-~-8iJO-~-~ -2 ~ -~a -~ (HIJ--r (2.13) 

Alternatively, one may differentiate Eq. (2.9) instead of the entire Eq. (2.8) in 
order to get the second derivative of CI energy. This leads to 

2_ff__H 02E 0 IJ oCI [OHIj OE\ 

Although this equation does not seem to be symmetric with respect to the 
interchange of variables a and b, it may be proved to be identical to the symmetric 
form of Eq. (2.13) using the following relationship (for related discussion see [15]) 

• (Omij ~ OJ~=~i OC I i/OOij 01~\ ~I O~"a ~J C" ~k'-'~-- IJ-~-J -~ ~j CJ ~ ~-aa -f~lJ~a ) 
oC, aQ 

= - Z  - -  - -  ( H , ~  - ~ H E )  ( 2 . 1 5 )  u Oa Ob 

which is derived from the CPCI equation (2.12). 

2.3. Third derivatives 

Similarly, the further differentiation of Eq. (2.13) with respect to a third variable 
c gives the third derivative formula 

CICj(HIj-•IjE) Oa ob Oc 
( 03HIj ~ 0317, ~ OC1 (02HIj 02E \ 

: ~  CICJ\oa~Oe 'JaaObOe]+2~ O---c-~j C J \ ~ - ~ - 6 u O - ~ )  

aGocj[oH, j oE\ oCIF, O2CJ t "  

2__s OCI a j _~IjE)=O" (2.16) - 2 ~ - ~  ~j Oc oa ( HzJ 
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Using the second derivative of the variational condition Eq. (2.4), 

02Cj , .  [OCs(OHu 6 0 E ~  . OCs f Hu 

2 H 0 u 
,s 0 - - ~ ]  ] =0, (2.17) 

the last two terms in Eq. (2.16) may be rewritten without including the second 
derivatives of CI coefficients. The fact that the third-order energy only requires 
the first-order CI coefficients is called the Wigner's 2n + 1 rule [17], and has been 
demonstrated for an analytical third derivative expression for MCSCF wave 
functions by Pulay [18]. 

Finally, one can get the third-order expression for the CI energy, 

r-' ,'-' [ a3 Hw t3 03 E 1 

OCj 02HIj ~ 02E "~ 
+ 2  7 \ oa - %7-g.  ) 

oC,{o2Hu ~ o 2 E I ]  

FOCIOCj(OHIj Of , (oHi j  

+oc, oc ,  (oH, ,_  a , , -g-  = o. (2.18) 
Oc Oa \ Ob 

In this equation, the terms including the second derivatives of CI energy, such 
as 6u 02E/Oa oh, may be eliminated using the condition derived from the deriva- 
tive of the normalization condition (2.5), 

0G 
Y~ Ct = O, (2.19) 
x Oa 

These terms, however, are included for further differentiation so that one may 
obtain higher-order derivatives in symmetric forms. 

2.4. Fourth derivatives 

The fourth derivative relation may be obtained by differentiating Eq. (2.18) with 
respect to a fourth nuclear coordinate d, 

~C,  Cs(  04Hu 0 4 E )  
Oa Ob Oc Od 6U Oa Ob Oc Od 

--~c \OdOaOb zsO--d~a-Ob] - ~ \ Z - ~ O c  aU~a~-Oc)J 
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FOC, OC.~(O2H, s . 02E \ OCroCj{O2H, I ~ 02E "~ 
+ 2 Z  L \ -~-a - ~  ~ - ~ - - ~ - O , s ~ - ~ )  + u Oa -~c \ 0 - - ~ -  U o - ~ , ]  

+oGoG(o214,, _ &z\+OClOCj(214,,_ o~E\ 
O---a O d O-~c - O H O-~c ) O b O c \ O a O d 6 tJ o-a-d-d ) 

oCIOCjIIO2HL[ 02E'~ OC, OCj(O2HIj r 02E~] 
aa ec-a" e-g c) + ec od 

{ 02CI oecj 02CI 02Cj 02Ci O2Cj~ 
-2Y .  \ ~  OcO~ ~- + (Hxs-6uE)=O (2.20) ts oa oc ob oa oa od - ~ c )  

where we used the relation (2.17) which is the second-order CPCI equation. In 
the fourth derivative expression (2.20), the third derivatives of CI energy may 
be eliminated using the condition (2.19) as well as in the case of the third derivative 
(2.18). 

It is noticeable that, in the sequence of differentiation, each term always carries 
the Hamiltonian matrix and the energy in the form of (H,s-a,~E) and its 
derivatives. This fact is one of the advantages of getting the higher derivatives 
by differentiating Eq. (2.7). In the present derivation the CPCI equations may 
be effectively introduced to express the results in terms of lower order derivatives 
of the CI coefficients. Moreover, one can avoid missing the derivatives o f "h idden  
terms" due to the conditions used in the determination of the wave function. 

3. Coupled perturbed configuration interaction (CPCI) equations 

The CPCI equations already introduced as Eqs. (2.12) and (2.17) are the simul- 
taneous equations which provide the derivatives of the CI coefficients. While 
coupled perturbed equations are generally obtained by collecting the same order 
terms of the Taylor expansion about an infinitesimal nuclear displacement, we 
have derived them straightforwardly by differentiating the variational condition 
(2.4) as shown in the previous section. Equations (2.12) and (2.17), however, 
cannot be solved directly, because these equations have a singularity due to the 
constraint (2.5). In order to solve CPCI equations practically, Eq. (2.4) can be 
modified by adding the zero term 0(1 -Y~t C2), an approach which is similar to 
the Lagrange multiplier method. Since the factor 0 may be arbitrarily chosen, 
we use 0 = 1 in the following derivation 

The differentiation of Eq. (3.1) with respect to a variable a gives a practically 
soluble first-order CPCI equation 

oc, /o1-1. oE) 
Z ( H u - 3 u E + 2 C ,  Cj) aa - 

It should be realized that the determinant of the left-hand side IH.-a.E+ 
2Cxfsl is no longer zero when one explicitly includes the derivative form (2.19) 
of the normalization condition (2.5). This technique is mathematically equivalent 
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to the projection operator method from electronic states to configuration space 
in the quadratically convergent (Newton-Raphson) MCSCF procedure by 
Lengsfield and Liu [19]. 

The second-order CPCI equation may be obtained by the further differentiation 
of Eq. (3.2), 

E ( H u - 6 u E + 2 C ,  C j )  02CJ - ~ (  6 
02 E "~ 

j Oa ob - \ ~ - ~ -  uo---a--~, ] c r 

(o.,,_ oE oc,  oc, 
\ O a  O'J~a-~-Cl-~a) O--b 

oe oc \oc, 
(3.3) 

d 

Comparing this equation with (2.17), it is seen that the second-order CPCI 
equation naturally includes the relation from the second derivative of the nor- 
malization condition (2.5), 

o c, , o G  o c , \  
~ ( C, ~-a--~ • - ~ )  = 0. (3.4) 

The explicit formula for the derivatives of the Hamiltonian matrix appearing in 
the CPCI equations will be given in the Sect. 5. 

4. Derivatives of molecular orbital coefficients 

Before writing down the practical formulae for the derivatives of the C1 energy, 
we shall discuss the derivatives of the MO coefficients which appear in the 
expression for the derivatives of Hamiltonian matrix elements Hu. 

Since the CI Hamiltonian matrix is constructed from MO integrals, the derivatives 
with respect to nuclear coordinates include both the derivatives of AO integrals, 
h~,, and (/xulp~r), and the derivatives of MO coefficients. The latter may usually 
be expressed by the U matrices. The derivatives of the/~th coefficient of the ith 
molecular orbital, C~, define U matrices as follows. 

=• U~,iC~ (4.1) 
c3a m 
2 i 

O C ~  = v  lrabC m (4.2) 
O a O b ~ ~ ,,,i ~ ,~ 

3 i 
0 C~ l l a b ~ t ? ,  ~ (4.3) 

Oa Ob Oc = ~ v,,,i ~ ~ m 

4 i 

0 C ~  U~,]caC, . (4.4) 
Oa Ob Oc od - ~ ~" r r l  

In carrying out the differentiation of the MO coefficients, it is convenient to have 
following relations 

uo. v (4.5) 
Ob = i / - ~  k 
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OU~ b uab~ V 
= ,j - ,  Uik U;  b (4.6) 

Oc k 

O l]-5b~ 
~ t J  : i-]~abcd U~bC 
Od ~ o  - ~  Udk �9 . (4.7) 

k 

The U matrices may be obtained by solving the coupled equations based on the 
particular procedure by which the molecular orbitals are determined. The coupled 
perturbed Hartree-Fock (CPHF) equations for the nuclear displacement based 
on the closed-shell SCF method were presented by Gerratt and Mills in 1968 
[20]. Pople's group and the Berkeley group have utilized the closed-shell CPHF 
equation to evaluate ab initio SCF second derivatives [4] and CI gradients [5]. 
More recently, CPHF equations have been extended to general open-shell [8], 
two-configuration SCF [ 1 Of], and multi-configuration (MC) SCF wave functions 
[10]. 

5. Derivatives of the CI energy 

5.1. First derivatives 

Using the U" matrices described in the previous section, the first derivative of 
the CI Hamiltonian matrix elements may be given as follows. 

Oa = ~  - -  ~ (5.1) 
v Y~j Oa Okl Oa 

l[  a M 1] 
= H T j + 2  2 --,,~--,m (5.2) 

im 

where 

S l j  Z IJ r a -  lJ .. a = Fi2k~(lylkl)a Yi; no-~ F, (5.3) 
ij ijkl 

X iJJ ..~. 2 I3 /J ., Ymj ha + 2 Z r,wk, (tY ] kl) (5.4) 
j jk l  

h~ = Z c .  (5.5) 
~,, Oa 

and 

(o lk l ) "  Z cic% ~ 'a(~vlP'~) = C o C,~ (5.6) 
~ Oa 

Defining the density matrices 

~',j = E C, G y; / ,  (5.7) 
lJ 

and 

F,~k, = Z 'J C1 Ca F,jk,, (5.8) 
IJ 

the alternative energy expression of Eq. (2.6) is given in the integral form 

E = Z ~,~h~j + Z rCk, (ijJ kl). (5.9) 
/3 ! jkl 
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The first derivative of the CI energy, i.e. CI gradient, is obtained by 

OE 
- -  =.Y_., yoh~+ Y~ r, k,(ijl kl)a +2 E U,%X,,,,, (5.10) 
0 a ij ijkl im 

where X is the Lagrangian matrix defined as 

X,m =Y, 7m~ho +2 Y. r,,jk,(ijl kl). (5.11) 
j jkl 

Note that the matrix X is not in general symmetric with respect to the interchange 
of the indices i and m. 

5.2. Second derivatives 

An expression for the second derivative of the electronic energy of CI wave 
functions may be obtained from Eq. (2.13), 

02E 02Hu 0CI OCs 
O a O b - ~  C'CJoao------b-2~ -~a - ~  ( H , , - 6 u E ) .  (5.12) 

The second derivative of the Hamiltonian matrix element Hu in the first term 
of Eq. (5.12) is explicitly written as 

O2Hu 1.1 02hij u a2(/J[ kl) 
OaOb=~.. Yu ~ - ~ +  Ok, ~ rOk' Oa ob (5.13) 

1J a ab t r~  u ~ x u b +  Ui%X,., ) = H u + 2  ~ (v i , , . - ,m+  U i m . * i r n  

+ 2  E 2 uima U~n Yimjnl"1 (5.14) 
im jn 

where 
H~b=y. U~ab FU q.,kl,ab (5.15) y ~j n ~ + Y ~jkl t tJ t ) 

ij ijkl 

x ilJa = E IJ a IJ F ,,2kl y , v h v + 2  y~ (ijlkl) ~ (5.16) 
j jkl 

IJ IJ + 2r  mknl( ikl j l )}  (5.17) y,~j =ym.  ho+2E{r~ .k , ( i j l k l  ) 'J 
kl 

h~b Z * J 02hi* = C** C~ (5.18) 
~,~ Oa Ob 

and 

(/jlk/) ab E ' J k ,a2(/xvlP ~ 
= C~,C~ C p C ,  (5.19) 

~,~o~ Oa ob 

The CI second derivative may now be explicitly given by combining Eqs. (5.12)- 
(5.19). 

02E y~ ~b = U~X~= yijhij + ~, Fuk/(/j[ kl) abq-2 ~,, ab 
Oa Ob ij {jkl im 

+2 Y (U,~X}m+ b ~ 
irn im jn 

oC~ OCj 
- 2 ;  Oa - ~  ( H , j - a , j E )  (5.20) 
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where 

X,~ = Z Ymjh~j + 2 E r~j~,(/jl kl) ~ (5.21) 
j jkl 

a n d  

Y.~j. = 7... ho + 2 E {r...k, (/jl kl) + 2rink., (ik Ijl)}. (5.22) 
k~ 

While X~,~ ~ X,,~ and Xi~ r X ~ ,  the Y matrix has the following symmetry 
properties 

Y~mS, = YS'" # V~o. = g,, . ,  # Y~,,,s = Vnjim e Y~,,j = Y,s,,~. (5.23) 

The derivative of the CI coefficients oC~/Oa may be determined by solving the 
first-order CPCI Eq. (3.2). The U ab matrices which are related to the second 
derivative of MO coefficients may be evaluated by solving the second-order CPHF 
equations [21]. 

5.3. Third derivatives 

The third derivative expression for the CI energy is given from Eq. (2.18) 

03 E 03 HL1 

Oa ob Oc Y G'~J Ob Oc IJ 

..~ 2 ~I CI ~ (OCjO2HI j  ~ OCjO2HIj  ~ OCj O2HIj~ 

s \Oa ObOc Ob OcOa Oe OaOb/ 

[ OC~OCj[OHu OE\ OC~OCs[OHtj OE\ 

(5.24) D 

The terms involving the second derivativeS of the energy in Eq. (2.18) are 
eliminated by the condition (2.19). The first term in Eq. (5.24) may be expressed 
as follows 

~Ij ClCs o Oa 3 H I s _  Yono'Ob~--r ,,~b~y Ob Oc - y" Z Fo'k,(!j[ kl)ab~ + 2 Z ~im --/~ 
0 ijkl im 

+ 2 E  
ira 

+ 2 Z  
im 

+ 2 ~  
im 

+2Y~ 
im 

+ 8 2  
im jn ko 

+ u L  u;. uL)  E rm.o,(/j I kl) 
t 

ab ~ + U.,,X~,.) 

2 ( u,~ c G + u ~  u~ + u,~ uy.) ~m~. 
jn 

ira ~bc  l ib ~,-caq_~[c ~,-ab~ 

jn 

E E ( u,~ u~o u L  + u L  u~ u L  

(5.25) 
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where 

h,b~ _ i (5.26) ij -- ~ C ,  C+ 03h"~ 
~ Oa Ob Oc 

c j C k C ~ ~ ( i j lk ly  b~= 2 C~ ~ . <, OaabOc 
p.~,pG 

ab Xlm =2  Ymjh~j b + 2 ~, Fmjk, (/j I kl) ab 
j jkl 

and 

Yi~j. = ym.h~ + 2 Y~ {rm~ (01 kl) a +2F,,,k,,(ikljl)a}. 
kl 

(5.27) 

(5.28) 

(5.29) 

5.4. Fourth derivatives 

In a manner analogous to that employed in the previous section, the terms 
involving 6u 03E/Oa ob Oc in Eq. (2.20) may be removed to give an expression 
for the fourth derivatives of the electronic energy, namely 

04E 04HB 
Oa Ob Oc Od ~ C~CJ oa Ob Oc Od 

.O.__Cj 03HIj OCj 03HIj OCj 03HIj 
+ 2 ~ G ZJ L Oa Ob Oc O~ + Ob Oc Od O~ + Oc Od Oa Ob 

oCj 03HIj ] 

+2;l_-~-a --~-\0-- ~ -  ,JO--c~] 
+ OCIoG[o2Hu a a2E'~ 

oc to-g- - 

+ OC'OG[O2Hu 6 02E~ " 8C'OC'j[O2HIj 02E \ 

+aC, oCj{a2Hi~ _ a 2 E \  O G o G [ o 2 H .  ~ a2E~ 

(a2Cs O2Cj O2Cs 02Cj O2CI O2Cs\. 
- 2  ~ \Oa Ob Oc O~ § Oc O b -  # Oa Od O-~c) ( H u - 6 u E ) "  

(5.30) 

The first and second derivatives of the Hamiltonian matrix appearing in Eq. 
(5.24) have been already defined in Eqs. (5.2) and (5.14). 
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The first term of Eq. (5.30) may be expressed as follows 

0 4 H I j  

C, CJ oa rs ob Oc Od 
~ ~ abed --  ~-[abcd~ yunu -i- ~ Fukl(ijlkl)~b~d + 2 ~ ~,,~ ~,~ 
ij ijkl im 

( [ f a b c ) ~ d  [ ' ; a b d y c  + u a e d ~ ' b  l [ b c d ~ (  a "1 
AV2 ~ ", v i m  - - i rn  2V ~ i m  - - i r a  v i m  - -  im q- v i m  --ira,, 

im 

( l f a b c  u d n  + N q b d  l f c  .q_ l]-acd Ubn _~_ []'bcd a 

im jn 

( [ l a b  ~ c d  4- ac bd ad bc cd ab bd * - a c  Xi, . )  U i,~ 2~ i~ + + 2 ~ . -i,~ ~-.,, - Ui,. X i . .  + Uim Xi . .  + Ui,. Xi,., + Ubi,~ ~ 
irtl 

im jn 

+ ( c~ ,r vJo + v ~g u ~ + u ~ u~o) Y~%. 
+(I l l ' t ;  ~ + ~ ufo+ od ~ --ira--S"- Ui,,, Ui~ US.)Y~,.jo 

+ 2  S 2 ~ ( U ~  U j . .  o~ d od Uko + Ui~ Ub. Uim Uko + U~ Uko 
im jn ko 

+ ubi c. U j n  U d o  ~- ~Ji~r d U j n  U k o - ~  UiCdm U~n b . . . .  U~o)Z..s.ko 

+2 Z Z ( u 2  uy. + u,~ u~.~ + u,~ u D  Y,.~. 
irn jn 

a ~"bcd.@ N b  y c d a @  i~[f y d a b 4 _  U f m ~ a b c ]  @2~ ( U i m . _ i m  - - - - i r a - - i r a  - - ~ , m ~ - i m  --  - - ira ] 
im 

cd a c bd a d bc + 2  ~ ~ ( U~m Uj~ Y.~j. + U . .  Uj., Y, . . j .+  U,.~ Uj.  Y,mj. 
im Sn 

@ U i  m u d n  ab ac c c Yimjn + Ubm UJn Yimj. "+ Ubim U~n ad Y,,..) 

'~ UkoZ.,,j.ko + U,~ U b. U'ZoZ..s,,~o 
irn jn ko 

a c d b c a + u,,. u~~ U~o z,,.~ + uh  u)o U~o z,.,j.~o) 

+ s Z ~ Z E (u,~ u~. uL u~ + u,~ u~ uL u~ + u,~ u~o uL u;)  
im jn ko lp 

F~.op(ij} k/) (5.31) 

where 

h~ b~= 2 C~ C s ~ 
~ ~ Oa Ob Oc od 

c ~ c ~ c '  ~ p~__2 (OIkI) ~b~a= ~ C~ ~ o ~ Oaobc)cOd 
t~ v p c r  

, ~ .  - =  Y E rmj~,(/jl 'Yrnj n ij "t" s 
j jk l  

(5.32) 

(5.33) 

(5.34) 
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Yimjnab = ./.~h~b + 2 E iF,..k,( ijl kl).b + 2F.~k.,( ik[jl)ab} 
kl 

(5.35) 

Z,r~j.ko =4 E {Fm.o,(O'[ kl) + Fmo.,( iklfl) + F,.,.o( il[jk )} 
I 

(5.36) 

and 

ZT~j.ko = 4 Y~ {Fro.o, (ijl kl) a + F~o., (ik Ijl) ~ + F=,~o (il Ijk)~}. 
l 

(5.37) 

The term involving the third derivative of Hamiltonian matrix may be written as 

3 C j  O 3 H I j  
Ec, 
u Oa Ob Oc Od 

- (a) l~bcd • (a) .. k l ) bcd  l T b c d y ( a )  = E r u  '~/J "-E Fijk,('JI +2Y, ~ , m  - - i ra  
ij ijkl im 

+ 2 ~ ( f [ b c  ~(!a)d 4- l rcd y ( a ) b  4 ~[bd ~ ( a ) c )  

im 

"1-2 ~, E ( U i~ UYn ~ U i cd ubn ~- u ibdm U)n) --,m3n 
im jrl 

( l f b  y ( a ) c d 4 -  l i e  y ( a ) b d 4 -  l i d  y ( a ) b e ]  +2 ~,, v i m - = i m  --  ~ i m - ~ i m  --  ~ i m - ~ i m  / 
im 

c ~!o!~+ G~ uio Y!~ uL  u~o v~~ + 2  E E (U~,.,, U;,, --,,,,,,, ~ l m j n  / ~ lmj t l  - -  
ira jrl 

+ s ~ E y ~ g L u j ~  (~ " { r  .... , (~j lkl)+r~2. , ( ik l j l )+r~,) .o( i l l jk)}  
im jn ko 1 

(5.38) 

where 

~1 (a) --  a C j  IJ - ~  Ct 3a 3'~ (5.39) 

F(,•) 
_ OCj u 

/jk, -- ~ C, O--a- r,jk, 

XI,~ ) = ~  3'~] h~j +2  ~ F~fk,(ijl kl) 
j jkl  

X(~)b v~] h~+2  E F~)k,(ijlkl)b im ~ ~ 
j jM 

x ( a ) b c  __ bc  ( a )  .. ,.~ - E y ~ ) h v  + 2 ~  Fm, k,(tjIkl) "~ 
j jkl  

r ! . )  = (a) z + 2 Y W~2~,(/jl k/) + 2F~k).,(ik[j/)} zmjn "~ mn ttij 
kl 

(5.40) 

(5.41) 

(5.42) 

(5.43) 

(5.44) 

and 

r~.~ ~.~h~+2~ (~ " ,,,,,, = {F,.,k,( Zj l kl) b + 2F~,, t(  ik [jl)b}. 
kl 

(5.45) 

Equation (5.30) clearly reflects Wigner's 2n + 1 rule [17] such that the fourth 
derivative of the CI energy requires only the first and second derivatives of  the 
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CI coefficients, which may be determined via the first and second-order CPCI 
equations (3.2) and (3.3). 

6. Computational implementation of the first and second derivatives 

The analytic evaluation of energy derivatives using correlated wave functions has 
already been implemented for the first and second derivatives of CI [4, 5, 9] and 
MCSCF [10] energies. When one employs the MCSCF wave function, it is 
possible to skip the steps to evaluate the second derivatives of the MO coefficients. 
However, there still remain computational difficulties in solving the coupled 
perturbed MCSCF equations routinely. Similar problem comes with the CPCI 
equations, which must be solved to obtain the CI second derivatives. In the 
present formulation, the other major problem in the evaluation of CI second 
derivatives is to solve the second-order CPHF equations for the second derivatives 
of the MO coefficients. This problem has already been successfully resolved for 
closed-shell and general open-shell RHF wave functions [21]. Moreover, the 
solution of the ( 3 N ) ( 3 N +  1)/2 second-order CPHF equations may be avoided 
by solving one CPHF-Iike equation using the Z-vector method of Handy and 
Schaefer [16]. 

In this section, we present an overview of the computational procedure for the 
CI first and second derivative methods, and discuss the various problems to be 
solved. Figure 1 illustrates the present algorithm for the evaluation of energy 
gradients and the second derivatives using CI wave function based on the 
following description. 

6.1. First derivatives 

The energy gradient for CI wave function (5.10) may be divided into two terms 
[5a] 

OE 
- E ~ ) +  E~2) (6.1) 

Oa 

where 

E~) = 2 w,jh~ + E Uuk,(ijlkl) ~ (6.2) 
i j 6kt 

= 2 Y,~ 0----a- E F,,o~ (6.3) 
,a v ~ u pcr O a 

and 

a a 

E(2) =2 Y~ UimXi,,.  (6.4) 
im 

The first term of Eq. (6.1) may be evaluated in the AO basis using the back 
transformed density matrices y ~  and F~p~ as shown in Eq. (6.3). The one- and 
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Fig. 1. Computational procedures for the analytic evaluation of energy first and second derivatives 
for configuration interaction wave functions. Note that the solution of the 3 N(3N + 1)/2 second-order 
CPHF equations may be avoided by solving one CPHF-Iike equation using the Z-vector method of 
Handy and Schaefer [16] 

t w o - e l e c t r o n  d e n s i t y  m a t r i c e s  in  t h e  A O  b a s i s  a re  o b t a i n e d  v i a  

~ =y~ c~ c ~ ,  
ff 

a n d  

F ~ p =  = ~ i j k 1 C~ C~, Cp C,~FOkl. 
ijkl 

(6.5) 

(6.6) 
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The second term, E(~), is evaluated from the Lagrangian matrix (5.11) and the 
U ~ matrix. 

6.2. Second derivatives 

The CI energy second derivative formula (5.20) may be divided into the following 
five terms 

OZE 
Oa Ob "t'~ (1) " l'~ (2) " l" (3) (6.7) 

where 

E~) =2 Yah~ b+ E Fak,(/j] kl) ~b 
O ~jm 

02htzv 
= Y. % . ~ - - : 7 , +  Y~ r,.~,,~ 

~v oa OD ~vpo- 

02(~v ]po') 
Oa Ob 

im 

E ~ , = 2  ~" a b b a (U~mX~+ U~.~X~,.) 
im 

im jn 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

and 

E(a5 b) = - -2  ~ ( H I j  -- • I j E )  OC-'''-I OCj  ( 6 . 1 3 ' )  

~s Oa ob" 

The first term E ~  involves second derivatives of AO integrals, and the second 
term E(~z~ requires the solution of the second-order CPHF equations, the U ab 
matrices. The Lagrangian derivative matrices X a appearing in the third term, 

ab E(3), may be evaluated either by using the transformed first derivative integrals 
in the MO basis, h~ and ( i j lk l )  a, (see Eq. (5.21)) or by using the partially 
transformed derivative Lagrangian and density matrices, X~=, Ym~ and F,~o~ , 

a 
X ~  = ~ C~ X , m  (6.14) 

/z 

where 

v 0 a vo~r 

O(liv I P~ (6.15) 
Oa 

and 

~,m~ = 2  -/,.j c+ 
J 

rmvpo- "~" 2 j k I Fmjkl C ~ C O C ~. 
jkl 

(6.16) 

(6.17) 
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The direct evaluation of the Y matrix appearing in E(~ requires a major computa- 
tional effort. Page et al. [10d] and Lee et al. [9b] developed a method to calculate 

a b  �9 ab  the term E(4)w~thout forming the Y matrix. There are two ways to evaluate E(4); 
using either partially transformed derivative MO integrals or derivative density 
matrices, 

E~b,=2~ Y~Ui~Ubn[y,,,,,ho+2~{F,~,,k,(ijlkl)+2Fmk,a(ikljl)}] (6.18) 
im j n  kl  

lf~ . <b> (6.19) = 2 ~  --~mX~,,, 
im  

where 

{b)  - -  ( b )  Xi,, - Z  ym. hi~ +2 Z Fm,k,{(ifilkl) (b>+ (in lkl) (b)+ (in lkl) (b)} (6.20) 
n nk l  

( b )  h,. <b~ (b)  (b}  . .  + F ~j~ + F ~jkr} (t) ] k/). (6.21) = Z ~  o+2Z {F,~fkl 
j j k l  

The partially transformed derivative integrals and derivative density matrices are 
defined as follows 

hl~ > = ~  U b. h 0 (6.22) 
J 

(ifi[ kl) <b> = E  ub.(iJ] kl) (6.23) 
J 

y<b) _ v b mr-  z. Uj. %.. (6.24) 
n 

F(b)  U~nFmnkt. ,,;k, = 2 (6.25) 
n 

The last term of the CI second derivative expression, E ~), requires the derivatives 
of the CI coefficients which may be obtained by solving the CPCI equations (3.2). 

6.3. First-order CPCI equations 

The first-order CPCI equation (3.2) is the linear equation which may be written 
in a simple matrix form; 

OC 
A. - -  = B : .  (6.26) 

Oa 

The matrix elements of Eq. (6.26) are given by 

Au = HI1 - ~uE + 2C~Cj (6.27) 

and 

,--~-- (6.28) 
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The first derivative of the Hamiltonian matrix element involved in (6.28) may be 
evaluated using the transformed derivative integrals in the MO basis [(5.5), (5.6)] 
and partially transformed derivative MO integrals [(6.22) and (6.23)] 

OHu = y~ Y~IJ (hij+h~ a ~'~>)+ Y~ F~{ ( / j  [ kl) ~ +(~j[ kl) <~>} (6.29) 
Oa q qk~ 

where 

h!~'> = hL~> + h!~ > (6.30) y .-/j .-zj 

and 

(/J[ kl) <~> = ( [Jl kl) <~>+ (ill kl) <a>+ (~/I/~l) <~>+ (/Jl k/-) ~>. (6.3 i) 

One of the most time consuming steps in the CPCI procedure is the evaluation 
of the derivative integrals in the MO basis, (/j[kl) a to form the derivative 
Hamiltonian matrix OHu/Oa. When the derivative Hamiltonian matrix element 
is evaluated, one may directly form B~, by multiplying with the CI coefficients 
so that one can avoid storing the huge derivative Hamiltonian matrix. After the 
B~ matrix is calculated for all nuclear coordinates a, the linear equation (6.26) 
may be solved iteratively by using Pople's method [4]. One may use an alternative 
procedure to evaluate E~ b) with the direct inversion of ( H u -  SuE +2C~C:). 

6.4. Computational problems and the future 

The practical problem in solving the CPCI equations is the large requirement of 
memory storage, not to mention computation time. This fact may be appreciated 
by noting that the CPCI procedure involves roughly 3N times the computation 
of the CI energy in order to get (3N) 2 force constants, where N is the number 
of atoms. 

Although the CI energy and wave function are usually determined by employing 
only configurations that contribute to the electronic state, one must expand the 
configuration space in order to solve the CPCI equation. This is due to the fact 
that the derivatives of the Hamiltonian matrix are not necessarily zero even if 
the corresponding matrix elements of the (zeroth order) Hamiltonian are zero 
by molecular symmetry. If  the CPCI equation is solved by exploiting the molecular 
symmetry, the linear equations (6.26) should take a block-diagonal form deter- 
mined by symmetry of both the electronic configurations and nuclear displace- 
ments. 

In order to make the CI second derivative more tractable, one obviously needs 
to develop an efficient CI code. The analytic derivative procedure is also enhanced 
if one can easily vectorize or parallelize the programming code. In this regard 
the progress of appropriate computer software and hardware is also strongly 
looked for. Fig. 2 shows a qualitative sketch of the computation time requirements 
for analytic derivative methods. 
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Fig. 2. Rough estimation of computation times for analytic energy derivative methods. Note that the 
estimates do not refer to any particular example and the relative amounts of computation will vary 
significantly from case to case. As discussed in the text, the solution of the 3N CPHF equations for 
the CI gradient, and the solution of the 3 N ( 3 N +  1)/2 second-order CPHF equations for the CI 
second derivatives, may be avoided by solving one CPHF-like equation using the Z-vector method 
of Handy and Schaefer [16] 

7. Concluding remarks 

In modern molecular electronic structure theory the development of analytic 
energy derivative techniques is essential in order to obtain reliable information 
concerning potential energy hypersurfaces in an efficient and precise manner. In 
this review a straightforward way of deriving explicit analytic higher energy 
derivative expressions for the CI wave function is presented. Also shown is a 
new route to the formulation of the CPCI equations in directly soluble forms. 
In this paper we have concentrated on the two (orthogonality and variational) 
conditions on the CI space. It should be noted that in his important monograph 
contribution Pulay [22] anticipated some aspects of the present approach, by 
using a related form of the energy expression and making use of Lagrange 
multipliers in the CI part of the MCSCF energy. In a forthcoming paper we plan 
to pursue the correspondence among higher energy derivatives of the CI, MCSCF, 
and SCF wave functions by imposing additional two conditions on the MO space 
and considering the uniqueness of the coupling constants. 
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